首页    期刊浏览 2025年06月16日 星期一
登录注册

文章基本信息

  • 标题:Marginal Posterior Simulation via Higher-order Tail Area Approximations
  • 本地全文:下载
  • 作者:Erlis Ruli ; Nicola Sartori ; Laura Ventura
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2014
  • 卷号:9
  • 期号:1
  • 页码:129-146
  • DOI:10.1214/13-BA851
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:A new method for posterior simulation is proposed, based on the combination of higher-order asymptotic results with the inverse transform sampler. This method can be used to approximate marginal posterior distributions, and related quantities, for a scalar parameter of interest, even in the presence of nuisance parameters. Compared to standard Markov chain Monte Carlo methods, its main advantages are that it gives independent samples at a negligible computational cost, and it allows prior sensitivity analyses under the same Monte Carlo variation. The method is illustrated by a genetic linkage model, a normal regression with censored data and a logistic regression model.
国家哲学社会科学文献中心版权所有