首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Laplace Approximation for Logistic Gaussian Process Density Estimation and Regression
  • 本地全文:下载
  • 作者:Jaakko Riihimäki ; Aki Vehtari
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2014
  • 卷号:9
  • 期号:2
  • 页码:425-448
  • DOI:10.1214/14-BA872
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Logistic Gaussian process (LGP) priors provide a flexible alternative for modelling unknown densities. The smoothness properties of the density estimates can be controlled through the prior covariance structure of the LGP, but the challenge is the analytically intractable inference. In this paper, we present approximate Bayesian inference for LGP density estimation in a grid using Laplace’s method to integrate over the non-Gaussian posterior distribution of latent function values and to determine the covariance function parameters with type-II maximum a posteriori (MAP) estimation. We demonstrate that Laplace’s method with MAP is sufficiently fast for practical interactive visualisation of 1D and 2D densities. Our experiments with simulated and real 1D data sets show that the estimation accuracy is close to a Markov chain Monte Carlo approximation and state-of-the-art hierarchical infinite Gaussian mixture models. We also construct a reduced-rank approximation to speed up the computations for dense 2D grids, and demonstrate density regression with the proposed Laplace approach.
国家哲学社会科学文献中心版权所有