首页    期刊浏览 2025年06月13日 星期五
登录注册

文章基本信息

  • 标题:A product-multinomial framework for categorical data analysis with missing responses
  • 本地全文:下载
  • 作者:Frederico Z. Poleto ; Julio M. Singer ; Carlos Daniel Paulino
  • 期刊名称:Brazilian Journal of Probability and Statistics
  • 印刷版ISSN:0103-0752
  • 出版年度:2014
  • 卷号:28
  • 期号:1
  • 页码:109-139
  • DOI:10.1214/12-BJPS198
  • 语种:English
  • 出版社:Brazilian Statistical Association
  • 摘要:With the objective of analysing categorical data with missing responses, we extend the multinomial modelling scenario described by Paulino (Braz. J. Probab. Stat. 5 (1991) 1–42) to a product-multinomial framework that allows the inclusion of explanatory variables. We consider maximum likelihood (ML) and weighted least squares (WLS) as well as a hybrid ML/WLS approach to fit linear, log-linear and more general functional linear models under ignorable and nonignorable missing data mechanisms. We express the results in an unified matrix notation that may be easily used for their computational implementation and develop such a set of subroutines in R. We illustrate the procedures with the analysis of two data sets, and perform simulations to assess the properties of the estimators.
国家哲学社会科学文献中心版权所有