首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Coherent forecasting for over-dispersed time series of count data
  • 本地全文:下载
  • 作者:Raju Maiti ; Atanu Biswas
  • 期刊名称:Brazilian Journal of Probability and Statistics
  • 印刷版ISSN:0103-0752
  • 出版年度:2015
  • 卷号:29
  • 期号:4
  • 页码:747-766
  • DOI:10.1214/14-BJPS244
  • 语种:English
  • 出版社:Brazilian Statistical Association
  • 摘要:In the context of an over-dispersed count time series data on disease incidences, we consider the Geometric integer-valued autoregressive process of order 1 or GINAR(1), which was first introduced by McKenzie (Adv. Appl. Probab. 18 (1986) 679–705) as an analogue of continuous AR(1) process with exponential margin (Adv. Appl. Probab. 12 (1980) 727–745) on the positive support ($\mathbb{R}^{+}$). A strong enthusiasm still persists as it is apparent from Ristić et al. (J. Stat. Plann. Inf. 139 (2009) 2218–2226). Coherent forecasting of Poisson INAR(1) process due to Al-Osh and Alzaid (J. Time Ser. Anal. 8 (1987) 261–275) was studied by Freeland and McCabe (Int. J. Forecast. 20 (2004) 427–434). Here, we study the $h$-step ahead forecasting distribution corresponding to GINAR(1) process in details using probability generating function. Large sample distributions of the conditional least squares estimates of the model parameters are derived. Some numerical study is performed to illustrate the theoretical results.
国家哲学社会科学文献中心版权所有