首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Consistency of hyper-$g$-prior-based Bayesian variable selection for generalized linear models
  • 本地全文:下载
  • 作者:Ho-Hsiang Wu ; Marco A. R. Ferreira ; Matthew E. Gompper
  • 期刊名称:Brazilian Journal of Probability and Statistics
  • 印刷版ISSN:0103-0752
  • 出版年度:2016
  • 卷号:30
  • 期号:4
  • 页码:691-709
  • DOI:10.1214/15-BJPS299
  • 语种:English
  • 出版社:Brazilian Statistical Association
  • 摘要:We study the consistency of a Bayesian variable selection procedure for generalized linear models. Specifically, we consider the consistency of a Bayes factor based on $g$-priors proposed by Sabanés Bové and Held [Bayesian Analysis 6 (2011) 387–410]. The integrals necessary for the computation of this Bayes factor are performed with Laplace approximation and Gaussian quadrature. We show that, under certain regularity conditions, the resulting Bayes factor is consistent. Furthermore, a simulation study confirms our theoretical results. Finally, we illustrate this model selection procedure with an application to a real ecological dataset.
国家哲学社会科学文献中心版权所有