首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Improved estimation in a general multivariate elliptical model
  • 本地全文:下载
  • 作者:Tatiane F. N. Melo ; Silvia L. P. Ferrari ; Alexandre G. Patriota
  • 期刊名称:Brazilian Journal of Probability and Statistics
  • 印刷版ISSN:0103-0752
  • 出版年度:2018
  • 卷号:32
  • 期号:1
  • 页码:44-68
  • DOI:10.1214/16-BJPS331
  • 语种:English
  • 出版社:Brazilian Statistical Association
  • 摘要:The problem of reducing the bias of maximum likelihood estimator in a general multivariate elliptical regression model is considered. The model is very flexible and allows the mean vector and the dispersion matrix to have parameters in common. Many frequently used models are special cases of this general formulation, namely: errors-in-variables models, nonlinear mixed-effects models, heteroscedastic nonlinear models, among others. In any of these models, the vector of the errors may have any multivariate elliptical distribution. We obtain the second-order bias of the maximum likelihood estimator, a bias-corrected estimator, and a bias-reduced estimator. Simulation results indicate the effectiveness of the bias correction and bias reduction schemes.
国家哲学社会科学文献中心版权所有