首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Convergence of complex martingales in the branching random walk: the boundary
  • 本地全文:下载
  • 作者:Konrad Kolesko ; Matthias Meiners
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2017
  • 卷号:22
  • DOI:10.1214/17-ECP50
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:Biggins [Uniform convergence of martingales in the branching random walk. Ann. Probab., 20(1):137–151, 1992] proved local uniform convergence of additive martingales in $d$-dimensional supercritical branching random walks at complex parameters $\lambda $ from an open set $\Lambda \subseteq \mathbb{C} ^d$. We investigate the martingales corresponding to parameters from the boundary $\partial \Lambda $ of $\Lambda $. The boundary can be decomposed into several parts. We demonstrate by means of an example that there may be a part of the boundary, on which the martingales do not exist. Where the martingales exist, they may diverge, vanish in the limit or converge to a non-degenerate limit. We provide mild sufficient conditions for each of these three types of limiting behaviors to occur. The arguments that give convergence to a non-degenerate limit also apply in $\Lambda $ and require weaker moment assumptions than the ones used by Biggins.
国家哲学社会科学文献中心版权所有