摘要:We obtain the optimal proxy variance for the sub-Gaussianity of Beta distribution, thus proving upper bounds recently conjectured by Elder (2016). We provide different proof techniques for the symmetrical (around its mean) case and the non-symmetrical case. The technique in the latter case relies on studying the ordinary differential equation satisfied by the Beta moment-generating function known as the confluent hypergeometric function. As a consequence, we derive the optimal proxy variance for the Dirichlet distribution, which is apparently a novel result. We also provide a new proof of the optimal proxy variance for the Bernoulli distribution, and discuss in this context the proxy variance relation to log-Sobolev inequalities and transport inequalities.
关键词:sub-Gaussian;Beta distribution;Dirichlet distribution;concentration inequality; transport inequality;log-Sobolev inequality