首页    期刊浏览 2025年06月16日 星期一
登录注册

文章基本信息

  • 标题:Kesten’s incipient infinite cluster and quasi-multiplicativity of crossing probabilities
  • 本地全文:下载
  • 作者:Deepan Basu ; Artem Sapozhnikov
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2017
  • 卷号:22
  • DOI:10.1214/17-ECP56
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:In this paper we consider Bernoulli percolation on an infinite connected bounded degrees graph $G$. Assuming the uniqueness of the infinite open cluster and a quasi-multiplicativity of crossing probabilities, we prove the existence of Kesten’s incipient infinite cluster. We show that our assumptions are satisfied if $G$ is a slab $\mathbb{Z} ^2\times \{0,\ldots ,k\}^{d-2}$ ($d\geq 2$, $k\geq 0$). We also argue that the quasi-multiplicativity assumption should hold for $G=\mathbb{Z} ^d$ when $d<6$, but not when $d>6$.
国家哲学社会科学文献中心版权所有