首页    期刊浏览 2025年01月10日 星期五
登录注册

文章基本信息

  • 标题:The genealogy of an exactly solvable Ornstein–Uhlenbeck type branching process with selection
  • 本地全文:下载
  • 作者:Aser Cortines ; Bastien Mallein
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2018
  • 卷号:23
  • DOI:10.1214/18-ECP197
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We study the genealogy of an exactly solvable population model with $N$ particles on the real line, which evolves according to a discrete-time branching process with selection. At each time step, every particle gives birth to children around $a$ times its current position, where $a>0$ is a parameter of the model. Then, the $N$ rightmost newborn children are selected to form the next generation. We show that the genealogy of the process converges toward a Beta coalescent as $N \to \infty $. The process we consider can be seen as a toy model version of a continuous-time branching process with selection, in which particles move according to independent Ornstein–Uhlenbeck processes. The parameter $a$ is akin to the pulling strength of the Ornstein–Uhlenbeck process.
国家哲学社会科学文献中心版权所有