首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Reconstruction of a high-dimensional low-rank matrix
  • 本地全文:下载
  • 作者:Kazuyoshi Yata ; Makoto Aoshima
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2016
  • 卷号:10
  • 期号:1
  • 页码:895-917
  • DOI:10.1214/16-EJS1128
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider the problem of recovering a low-rank signal matrix in high-dimensional situations. The main issue is how to estimate the signal matrix in the presence of huge noise. We introduce the power spiked model to describe the structure of singular values of a huge data matrix. We first consider the conventional PCA to recover the signal matrix and show that the estimation of the signal matrix holds consistency properties under severe conditions. The conventional PCA is heavily subjected to the noise. In order to reduce the noise we apply the noise-reduction (NR) methodology and propose a new estimation of the signal matrix. We show that the proposed estimation by the NR method holds the consistency properties under mild conditions and improves the error rate of the conventional PCA effectively. Finally, we demonstrate the reconstruction procedures by using a microarray data set.
  • 关键词:Eigenstructure;HDLSS;noise-reduction me thodology;PCA;singular value decomposition.
国家哲学社会科学文献中心版权所有