摘要:Generalized linear ($GL$-) statistics are defined as functionals of an $U$-quantile process and unify different classes of statistics such as $U$-statistics and $L$-statistics. We derive a central limit theorem for $GL$-statistics of strongly mixing sequences and arbitrary dimension of the underlying kernel. For this purpose we establish a limit theorem for $U$-statistics and an invariance principle for $U$-processes together with a convergence rate for the remaining term of the Bahadur representation.