首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:Kernel spectral clustering of large dimensional data
  • 本地全文:下载
  • 作者:Romain Couillet ; Florent Benaych-Georges
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2016
  • 卷号:10
  • 期号:1
  • 页码:1393-1454
  • DOI:10.1214/16-EJS1144
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:This article proposes a first analysis of kernel spectral clustering methods in the regime where the dimension $p$ of the data vectors to be clustered and their number $n$ grow large at the same rate. We demonstrate, under a $k$-class Gaussian mixture model, that the normalized Laplacian matrix associated with the kernel matrix asymptotically behaves similar to a so-called spiked random matrix. Some of the isolated eigenvalue-eigenvector pairs in this model are shown to carry the clustering information upon a separability condition classical in spiked matrix models. We evaluate precisely the position of these eigenvalues and the content of the eigenvectors, which unveil important (sometimes quite disruptive) aspects of kernel spectral clustering both from a theoretical and practical standpoints. Our results are then compared to the actual clustering performance of images from the MNIST database, thereby revealing an important match between theory and practice.
国家哲学社会科学文献中心版权所有