首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Robust learning for optimal treatment decision with NP-dimensionality
  • 本地全文:下载
  • 作者:Chengchun Shi ; Rui Song ; Wenbin Lu
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2016
  • 卷号:10
  • 期号:2
  • 页码:2894-2921
  • DOI:10.1214/16-EJS1178
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In order to identify important variables that are involved in making optimal treatment decision, Lu, Zhang and Zeng (2013) proposed a penalized least squared regression framework for a fixed number of predictors, which is robust against the misspecification of the conditional mean model. Two problems arise: (i) in a world of explosively big data, effective methods are needed to handle ultra-high dimensional data set, for example, with the dimension of predictors is of the non-polynomial (NP) order of the sample size; (ii) both the propensity score and conditional mean models need to be estimated from data under NP dimensionality.
  • 关键词:Non-concave penalized likelihood;optimal treat ment strategy;oracle property;variable selection.
国家哲学社会科学文献中心版权所有