首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Scalable Bayesian nonparametric regression via a Plackett-Luce model for conditional ranks
  • 本地全文:下载
  • 作者:Tristan Gray-Davies ; Chris C. Holmes ; François Caron
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2016
  • 卷号:10
  • 期号:2
  • 页码:1807-1828
  • DOI:10.1214/15-EJS1032
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We present a novel Bayesian nonparametric regression model for covariates X and continuous response variable Y\in\mathbb{R. The model is parametrized in terms of marginal distributions for Y and X and a regression function which tunes the stochastic ordering of the conditional distributions F(y|x). By adopting an approximate composite likelihood approach, we show that the resulting posterior inference can be decoupled for the separate components of the model. This procedure can scale to very large datasets and allows for the use of standard, existing, software from Bayesian nonparametric density estimation and Plackett-Luce ranking estimation to be applied. As an illustration, we show an application of our approach to a US Census dataset, with over 1,300,000 data points and more than 100 covariates.
  • 关键词:Bayesian nonparametrics;composite likelihood, Plackett-Luce;P´olya Tree;Dirichlet process mixtures.
国家哲学社会科学文献中心版权所有