首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Nonparametric Laguerre estimation in the multiplicative censoring model
  • 本地全文:下载
  • 作者:Denis Belomestny ; Fabienne Comte ; Valentine Genon-Catalot
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2016
  • 卷号:10
  • 期号:2
  • 页码:3114-3152
  • DOI:10.1214/16-EJS1203
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We study the model $Y_{i}=X_{i}U_{i},\;i=1,\ldots,n$ where the $U_{i}$’s are i.i.d. with $\beta(1,k)$ density, $k\ge1$, $k$ integer, the $X_{i}$’s are i.i.d., nonnegative with unknown density $f$. The sequences $(X_{i}),(U_{i}),$ are independent. We aim at estimating $f$ on ${\mathbb{R}}^{+}$ from the observations $(Y_{1},\dots,Y_{n})$. We propose projection estimators using a Laguerre basis. A data-driven procedure is described in order to select the dimension of the projection space, which performs automatically the bias variance compromise. Then, we give upper bounds on the ${\mathbb{L}}^{2}$-risk on specific Sobolev-Laguerre spaces. Lower bounds matching with the upper bounds within a logarithmic factor are proved. The method is illustrated on simulated data.
国家哲学社会科学文献中心版权所有