首页    期刊浏览 2025年07月06日 星期日
登录注册

文章基本信息

  • 标题:On Bayesian robust regression with diverging number of predictors
  • 本地全文:下载
  • 作者:Daniel Nevo ; Ya’acov Ritov
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2016
  • 卷号:10
  • 期号:2
  • 页码:3045-3062
  • DOI:10.1214/16-EJS1205
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:This paper concerns the robust regression model when the number of predictors and the number of observations grow in a similar rate. Theory for M-estimators in this regime has been recently developed by several authors (El Karoui et al., 2013; Bean et al., 2013; Donoho and Montanari, 2013). Motivated by the inability of M-estimators to successfully estimate the Euclidean norm of the coefficient vector, we consider a Bayesian framework for this model. We suggest a two-component mixture of normals prior for the coefficients and develop a Gibbs sampler procedure for sampling from relevant posterior distributions, while utilizing a scale mixture of normal representation for the error distribution. Unlike M-estimators, the proposed Bayes estimator is consistent in the Euclidean norm sense. Simulation results demonstrate the superiority of the Bayes estimator over traditional estimation methods.
国家哲学社会科学文献中心版权所有