首页    期刊浏览 2024年11月14日 星期四
登录注册

文章基本信息

  • 标题:Scalable Bayesian nonparametric measures for exploring pairwise dependence via Dirichlet Process Mixtures
  • 本地全文:下载
  • 作者:Sarah Filippi ; Chris C. Holmes ; Luis E. Nieto-Barajas
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2016
  • 卷号:10
  • 期号:2
  • 页码:3338-3354
  • DOI:10.1214/16-EJS1171
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this article we propose novel Bayesian nonparametric methods using Dirichlet Process Mixture (DPM) models for detecting pairwise dependence between random variables while accounting for uncertainty in the form of the underlying distributions. A key criteria is that the procedures should scale to large data sets. In this regard we find that the formal calculation of the Bayes factor for a dependent-vs.-independent DPM joint probability measure is not feasible computationally. To address this we present Bayesian diagnostic measures for characterising evidence against a “null model” of pairwise independence. In simulation studies, as well as for a real data analysis, we show that our approach provides a useful tool for the exploratory nonparametric Bayesian analysis of large multivariate data sets.
国家哲学社会科学文献中心版权所有