首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Prediction by quantization of a conditional distribution
  • 本地全文:下载
  • 作者:Jean-Michel Loubes ; Bruno Pelletier
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2017
  • 卷号:11
  • 期号:1
  • 页码:2679-2706
  • DOI:10.1214/17-EJS1296
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Given a pair of random vectors $(X,Y)$, we consider the problem of approximating $Y$ by c}(X)=\{\mathbf{c}_{1}(X),\dots ,\mathbf{c}_{M}(X)\ where c is a measurable set-valued function. We give meaning to the approximation by using the principles of vector quantization which leads to the definition of a multifunction regression problem. The formulated problem amounts at quantizing the conditional distributions of $Y$ given $X$. We propose a nonparametric estimate of the solutions of the multifunction regression problem by combining the method of $M$-means clustering with the nonparametric smoothing technique of $k$-nearest neighbors. We provide an asymptotic analysis of the estimate and we derive a convergence rate for the excess risk of the estimate. The proposed methodology is illustrated on simulated examples and on a speed-flow traffic data set emanating from the context of road traffic forecasting.
  • 关键词:Regression analysis;vector quantization;non parametric statistics;clustering;k-means;set-valued function;multifunc tion.
国家哲学社会科学文献中心版权所有