首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:A geometric approach to pairwise Bayesian alignment of functional data using importance sampling
  • 本地全文:下载
  • 作者:Sebastian Kurtek
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2017
  • 卷号:11
  • 期号:1
  • 页码:502-531
  • DOI:10.1214/17-EJS1243
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We present a Bayesian model for pairwise nonlinear registration of functional data. We use the Riemannian geometry of the space of warping functions to define appropriate prior distributions and sample from the posterior using importance sampling. A simple square-root transformation is used to simplify the geometry of the space of warping functions, which allows for computation of sample statistics, such as the mean and median, and a fast implementation of a $k$-means clustering algorithm. These tools allow for efficient posterior inference, where multiple modes of the posterior distribution corresponding to multiple plausible alignments of the given functions are found. We also show pointwise 95% credible intervals to assess the uncertainty of the alignment in different clusters. We validate this model using simulations and present multiple examples on real data from different application domains including biometrics and medicine.
  • 关键词:Functional data;warping function;Bayesian registration model;square-root slope function;square-root density.
国家哲学社会科学文献中心版权所有