首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Errors-in-variables models with dependent measurements
  • 本地全文:下载
  • 作者:Mark Rudelson ; Shuheng Zhou
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2017
  • 卷号:11
  • 期号:1
  • 页码:1699-1797
  • DOI:10.1214/17-EJS1234
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Suppose that we observe $y\in\mathbb{R}^{n}$ and $X\in\mathbb{R}^{n\times m}$ in the following errors-in-variables model: \begin{eqnarray*}y&=&X_{0}\beta^{*}+\epsilon\\X&=&X_{0}+W\end{eqnarray*} where $X_{0}$ is an $n\times m$ design matrix with independent subgaussian row vectors, $\epsilon\in\mathbb{R}^{n}$ is a noise vector and $W$ is a mean zero $n\times m$ random noise matrix with independent subgaussian column vectors, independent of $X_{0}$ and $\epsilon$. This model is significantly different from those analyzed in the literature in the sense that we allow the measurement error for each covariate to be a dependent vector across its $n$ observations. Such error structures appear in the science literature when modeling the trial-to-trial fluctuations in response strength shared across a set of neurons.
国家哲学社会科学文献中心版权所有