首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Estimation and inference of error-prone covariate effect in the presence of confounding variables
  • 本地全文:下载
  • 作者:Jianxuan Liu ; Yanyuan Ma ; Liping Zhu
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2017
  • 卷号:11
  • 期号:1
  • 页码:480-501
  • DOI:10.1214/17-EJS1242
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We introduce a general single index semiparametric measurement error model for the case that the main covariate of interest is measured with error and modeled parametrically, and where there are many other variables also important to the modeling. We propose a semiparametric bias-correction approach to estimate the effect of the covariate of interest. The resultant estimators are shown to be root-$n$ consistent, asymptotically normal and locally efficient. Comprehensive simulations and an analysis of an empirical data set are performed to demonstrate the finite sample performance and the bias reduction of the locally efficient estimators.
国家哲学社会科学文献中心版权所有