首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:A note on the approximate admissibility of regularized estimators in the Gaussian sequence model
  • 本地全文:下载
  • 作者:Xi Chen ; Adityanand Guntuboyina ; Yuchen Zhang
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2017
  • 卷号:11
  • 期号:2
  • 页码:4746-4768
  • DOI:10.1214/17-EJS1354
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We study the problem of estimating an unknown vector $\theta $ from an observation $X$ drawn according to the normal distribution with mean $\theta $ and identity covariance matrix under the knowledge that $\theta $ belongs to a known closed convex set $\Theta $. In this general setting, Chatterjee (2014) proved that the natural constrained least squares estimator is “approximately admissible” for every $\Theta $. We extend this result by proving that the same property holds for all convex penalized estimators as well. Moreover, we simplify and shorten the original proof considerably. We also provide explicit upper and lower bounds for the universal constant underlying the notion of approximate admissibility.
  • 关键词:Admissibility;Bayes risk;Gaussian sequence model;least squares estimator;minimaxity.
国家哲学社会科学文献中心版权所有