首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Approximate likelihood inference in generalized linear latent variable models based on the dimension-wise quadrature
  • 本地全文:下载
  • 作者:Silvia Bianconcini ; Silvia Cagnone ; Dimitris Rizopoulos
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2017
  • 卷号:11
  • 期号:2
  • 页码:4404-4423
  • DOI:10.1214/17-EJS1360
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We propose a new method to perform approximate likelihood inference in latent variable models. Our approach provides an approximation of the integrals involved in the likelihood function through a reduction of their dimension that makes the computation feasible in situations in which classical and adaptive quadrature based methods are not applicable. We derive new theoretical results on the accuracy of the obtained estimators. We show that the proposed approximation outperforms several existing methods in simulations, and it can be successfully applied in presence of multidimensional longitudinal data when standard techniques are not applicable or feasible.
国家哲学社会科学文献中心版权所有