首页    期刊浏览 2025年06月05日 星期四
登录注册

文章基本信息

  • 标题:Attributing hacks with survival trend filtering
  • 本地全文:下载
  • 作者:Ziqi Liu ; Alexander Smola ; Kyle Soska
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2017
  • 卷号:11
  • 期号:2
  • 页码:5311-5341
  • DOI:10.1214/17-EJS1380SI
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this paper we describe an algorithm for estimating the provenance of hacks on websites. That is, given properties of sites and the temporal occurrence of attacks, we are able to attribute individual attacks to joint causes and vulnerabilities, as well as estimate the evolution of these vulnerabilities over time. Specifically, we use hazard regression with a time-varying additive hazard function parameterized in a generalized linear form. The activation coefficients on each feature are continuous-time functions over time. We formulate the problem of learning these functions as a constrained variational maximum likelihood estimation problem with total variation penalty and show that the optimal solution is a $0$th order spline (a piecewise constant function) with a finite number of adaptively chosen knots. This allows the inference problem to be solved efficiently and at scale by solving a finite dimensional optimization problem. Extensive experiments on real data sets show that our method significantly outperforms Cox’s proportional hazard model. We also conduct case studies and verify that the fitted functions of the features respond to real-life campaigns.
国家哲学社会科学文献中心版权所有