首页    期刊浏览 2025年08月18日 星期一
登录注册

文章基本信息

  • 标题:Semi-parametric regression estimation of the tail index
  • 本地全文:下载
  • 作者:Mofei Jia ; Emanuele Taufer ; Maria Michela Dickson
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:1
  • 页码:224-248
  • DOI:10.1214/18-EJS1394
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Consider a distribution $F$ with regularly varying tails of index $-\alpha$. An estimation strategy for $\alpha$, exploiting the relation between the behavior of the tail at infinity and of the characteristic function at the origin, is proposed. A semi-parametric regression model does the job: a nonparametric component controls the bias and a parametric one produces the actual estimate. Implementation of the estimation strategy is quite simple as it can rely on standard software packages for generalized additive models. A generalized cross validation procedure is suggested in order to handle the bias-variance trade-off. Theoretical properties of the proposed method are derived and simulations show the performance of this estimator in a wide range of cases. An application to data sets on city sizes, facing the debated issue of distinguishing Pareto-type tails from Log-normal tails, illustrates how the proposed method works in practice.
国家哲学社会科学文献中心版权所有