首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:Asymptotic confidence bands in the Spektor-Lord-Willis problem via kernel estimation of intensity derivative
  • 本地全文:下载
  • 作者:Bogdan Ćmiel ; Zbigniew Szkutnik ; Jakub Wojdyła
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:1
  • 页码:194-223
  • DOI:10.1214/18-EJS1391
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The stereological problem of unfolding the distribution of spheres radii from linear sections, known as the Spektor-Lord-Willis problem, is formulated as a Poisson inverse problem and an $L^{2}$-rate-minimax solution is constructed over some restricted Sobolev classes. The solution is a specialized kernel-type estimator with boundary correction. For the first time for this problem, non-parametric, asymptotic confidence bands for the unfolded function are constructed. Automatic bandwidth selection procedures based on empirical risk minimization are proposed. It is shown that a version of the Goldenshluger-Lepski procedure of bandwidth selection ensures adaptivity of the estimators to the unknown smoothness. The performance of the procedures is demonstrated in a Monte Carlo experiment.
国家哲学社会科学文献中心版权所有