首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Conditional kernel density estimation for some incomplete data models
  • 本地全文:下载
  • 作者:Ting Yan ; Liangqiang Qu ; Zhaohai Li
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:1
  • 页码:1299-1329
  • DOI:10.1214/18-EJS1423
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:A class of density estimators based on observed incomplete data are proposed. The method is to use a conditional kernel, defined as the expectation of a given kernel for the complete data conditioning on the observed data, to construct the density estimator. We study such kernel density estimators for several commonly used incomplete data models and establish their basic asymptotic properties. Some characteristics different from the classical kernel estimators are discovered. For instance, the asymptotic results of the proposed estimator do not depend on the choice of the kernel $k(\cdot )$. Simulation study is conducted to evaluate the performance of the estimator and compared with some exising methods.
国家哲学社会科学文献中心版权所有