首页    期刊浏览 2025年04月28日 星期一
登录注册

文章基本信息

  • 标题:Convex and non-convex regularization methods for spatial point processes intensity estimation
  • 本地全文:下载
  • 作者:Achmad Choiruddin ; Jean-François Coeurjolly ; Frédérique Letué
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:1
  • 页码:1210-1255
  • DOI:10.1214/18-EJS1408
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:This paper deals with feature selection procedures for spatial point processes intensity estimation. We consider regularized versions of estimating equations based on Campbell theorem. In particular, we consider two classical functions: the Poisson likelihood and the logistic regression likelihood. We provide general conditions on the spatial point processes and on penalty functions which ensure oracle property, consistency, and asymptotic normality under the increasing domain setting. We discuss the numerical implementation and assess finite sample properties in simulation studies. Finally, an application to tropical forestry datasets illustrates the use of the proposed method.
国家哲学社会科学文献中心版权所有