首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Feasible invertibility conditions and maximum likelihood estimation for observation-driven models
  • 本地全文:下载
  • 作者:Francisco Blasques ; Paolo Gorgi ; Siem Jan Koopman
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:1
  • 页码:1019-1052
  • DOI:10.1214/18-EJS1416
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Invertibility conditions for observation-driven time series models often fail to be guaranteed in empirical applications. As a result, the asymptotic theory of maximum likelihood and quasi-maximum likelihood estimators may be compromised. We derive considerably weaker conditions that can be used in practice to ensure the consistency of the maximum likelihood estimator for a wide class of observation-driven time series models. Our consistency results hold for both correctly specified and misspecified models. We also obtain an asymptotic test and confidence bounds for the unfeasible “true” invertibility region of the parameter space. The practical relevance of the theory is highlighted in a set of empirical examples. For instance, we derive the consistency of the maximum likelihood estimator of the Beta-$t$-GARCH model under weaker conditions than those considered in previous literature.
国家哲学社会科学文献中心版权所有