首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:A deconvolution path for mixtures
  • 本地全文:下载
  • 作者:Oscar-Hernan Madrid-Padilla ; Nicholas G. Polson ; James Scott
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:1
  • 页码:1717-1751
  • DOI:10.1214/18-EJS1430
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We propose a class of estimators for deconvolution in mixture models based on a simple two-step “bin-and-smooth” procedure applied to histogram counts. The method is both statistically and computationally efficient: by exploiting recent advances in convex optimization, we are able to provide a full deconvolution path that shows the estimate for the mi-xing distribution across a range of plausible degrees of smoothness, at far less cost than a full Bayesian analysis. This enables practitioners to conduct a sensitivity analysis with minimal effort. This is especially important for applied data analysis, given the ill-posed nature of the deconvolution problem. Our results establish the favorable theoretical properties of our estimator and show that it offers state-of-the-art performance when compared to benchmark methods across a range of scenarios.
国家哲学社会科学文献中心版权所有