首页    期刊浏览 2025年07月08日 星期二
登录注册

文章基本信息

  • 标题:Confidence intervals for linear unbiased estimators under constrained dependence
  • 本地全文:下载
  • 作者:Peter M. Aronow ; Forrest W. Crawford ; José R. Zubizarreta
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:2
  • 页码:2238-2252
  • DOI:10.1214/18-EJS1448
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We propose an approach for conducting inference for linear unbiased estimators applied to dependent outcomes given constraints on their independence relations, in the form of a dependency graph. We establish the consistency of an oracle variance estimator when a dependency graph is known, along with an associated central limit theorem. We derive an integer linear program for finding an upper bound for the estimated variance when a dependency graph is unknown, but topological or degree-based constraints are available on one such graph. We develop alternative bounds, including a closed-form bound, under an additional homoskedasticity assumption. We establish a basis for Wald-type confidence intervals that are guaranteed to have asymptotically conservative coverage.
国家哲学社会科学文献中心版权所有