摘要:Modeled along the truncated approach in [20], selection-adjusted inference in a Bayesian regime is based on a selective posterior. Such a posterior is determined together by a generative model imposed on data and the selection event that enforces a truncation on the assumed law. The effective difference between the selective posterior and the usual Bayesian framework is reflected in the use of a truncated likelihood. The normalizer of the truncated law in the adjusted framework is the probability of the selection event; this typically lacks a closed form expression leading to the computational bottleneck in sampling from such a posterior. The current work provides an optimization problem that approximates the otherwise intractable selective posterior and leads to scalable methods that give valid post-selective Bayesian inference. The selection procedures are posed as data-queries that solve a randomized version of a convex learning program which have the advantage of preserving more left-over information for inference.