首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Non-parametric estimation of time varying AR(1)–processes with local stationarity and periodicity
  • 本地全文:下载
  • 作者:Jean-Marc Bardet ; Paul Doukhan
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:2
  • 页码:2323-2354
  • DOI:10.1214/18-EJS1459
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Extending the ideas of [7], this paper aims at providing a kernel based non-parametric estimation of a new class of time varying AR(1) processes $(X_{t})$, with local stationarity and periodic features (with a known period $T$), inducing the definition $X_{t}=a_{t}(t/nT)X_{t-1}+\xi_{t}$ for $t\in \mathbb{N}$ and with $a_{t+T}\equiv a_{t}$. Central limit theorems are established for kernel estimators $\widehat{a}_{s}(u)$ reaching classical minimax rates and only requiring low order moment conditions of the white noise $(\xi_{t})_{t}$ up to the second order.
国家哲学社会科学文献中心版权所有