首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Geometric ergodicity of Pólya-Gamma Gibbs sampler for Bayesian logistic regression with a flat prior
  • 本地全文:下载
  • 作者:Xin Wang ; Vivekananda Roy
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:2
  • 页码:3295-3311
  • DOI:10.1214/18-EJS1481
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The logistic regression model is the most popular model for analyzing binary data. In the absence of any prior information, an improper flat prior is often used for the regression coefficients in Bayesian logistic regression models. The resulting intractable posterior density can be explored by running Polson, Scott and Windle’s (2013) data augmentation (DA) algorithm. In this paper, we establish that the Markov chain underlying Polson, Scott and Windle’s (2013) DA algorithm is geometrically ergodic. Proving this theoretical result is practically important as it ensures the existence of central limit theorems (CLTs) for sample averages under a finite second moment condition. The CLT in turn allows users of the DA algorithm to calculate standard errors for posterior estimates.
国家哲学社会科学文献中心版权所有