首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:A quasi-Bayesian perspective to online clustering
  • 本地全文:下载
  • 作者:Le Li ; Benjamin Guedj ; Sébastien Loustau
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:2
  • 页码:3071-3113
  • DOI:10.1214/18-EJS1479
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:When faced with high frequency streams of data, clustering raises theoretical and algorithmic pitfalls. We introduce a new and adaptive online clustering algorithm relying on a quasi-Bayesian approach, with a dynamic (i.e., time-dependent) estimation of the (unknown and changing) number of clusters. We prove that our approach is supported by minimax regret bounds. We also provide an RJMCMC-flavored implementation (called PACBO, see https://cran.r-project.org/web/packages/PACBO/index.html) for which we give a convergence guarantee. Finally, numerical experiments illustrate the potential of our procedure.
国家哲学社会科学文献中心版权所有