首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Analysis of a mode clustering diagram
  • 本地全文:下载
  • 作者:Isabella Verdinelli ; Larry Wasserman
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:2
  • 页码:4288-4312
  • DOI:10.1214/18-EJS1510
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Mode-based clustering methods define clusters in terms of the modes of a density estimate. The most common mode-based method is mean shift clustering which defines clusters to be the basins of attraction of the modes. Specifically, the gradient of the density defines a flow which is estimated using a gradient ascent algorithm. Rodriguez and Laio (2014) introduced a new method that is faster and simpler than mean shift clustering. Furthermore, they define a clustering diagram that provides a simple, two-dimensional summary of the clustering information. We study the statistical properties of this diagram and we propose some improvements and extensions. In particular, we show a connection between the diagram and robust linear regression.
国家哲学社会科学文献中心版权所有