首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Nonparametric inference via bootstrapping the debiased estimator
  • 本地全文:下载
  • 作者:Gang Cheng ; Yen-Chi Chen
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2019
  • 卷号:13
  • 期号:1
  • 页码:2194-2256
  • DOI:10.1214/19-EJS1575
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this paper, we propose to construct confidence bands by bootstrapping the debiased kernel density estimator (for density estimation) and the debiased local polynomial regression estimator (for regression analysis). The idea of using a debiased estimator was recently employed by Calonico et al. (2018b) to construct a confidence interval of the density function (and regression function) at a given point by explicitly estimating stochastic variations. We extend their ideas of using the debiased estimator and further propose a bootstrap approach for constructing simultaneous confidence bands. This modified method has an advantage that we can easily choose the smoothing bandwidth from conventional bandwidth selectors and the confidence band will be asymptotically valid. We prove the validity of the bootstrap confidence band and generalize it to density level sets and inverse regression problems. Simulation studies confirm the validity of the proposed confidence bands/sets. We apply our approach to an Astronomy dataset to show its applicability.
国家哲学社会科学文献中心版权所有