首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Inhomogeneous and anisotropic conditional density estimation from dependent data
  • 本地全文:下载
  • 作者:Nathalie Akakpo ; Claire Lacour
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2011
  • 卷号:5
  • 页码:1618-1653
  • DOI:10.1214/11-EJS653
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The problem of estimating a conditional density is considered. Given a collection of partitions, we propose a procedure that selects from the data the best partition among that collection and then provides the best piecewise polynomial estimator built on that partition. The observations are not supposed to be independent but only β-mixing; in particular, our study includes the estimation of the transition density of a Markov chain. For a well-chosen collection of possibly irregular partitions, we obtain oracle-type inequalities and adaptivity results in the minimax sense over a wide range of possibly anisotropic and inhomogeneous Besov classes. We end with a short simulation study.
  • 关键词:Conditionaldensity;modelselection;anisotropy;dependentdata;adaptiveestimation.
国家哲学社会科学文献中心版权所有