首页    期刊浏览 2025年06月22日 星期日
登录注册

文章基本信息

  • 标题:Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic least-squares regression
  • 本地全文:下载
  • 作者:Adrien Saumard
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2012
  • 卷号:6
  • 页码:579-655
  • DOI:10.1214/12-EJS679
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider the estimation of a bounded regression function with nonparametric heteroscedastic noise and random design. We study the true and empirical excess risks of the least-squares estimator on finite-dimensional vector spaces. We give upper and lower bounds on these quantities that are nonasymptotic and optimal to first order, allowing the dimension to depend on sample size. These bounds show the equivalence between the true and empirical excess risks when, among other things, the least-squares estimator is consistent in sup-norm with the projection of the regression function onto the considered model. Consistency in the sup-norm is then proved for suitable histogram models and more general models of piecewise polynomials that are endowed with a localized basis structure.
  • 关键词:Least-squares regression;heteroscedasticity;ex cess risk;lower bounds;sup-norm;localized basis;empirical process.
国家哲学社会科学文献中心版权所有