首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Kernel density estimation with doubly truncated data
  • 本地全文:下载
  • 作者:Carla Moreira ; Jacobo de Uña-Álvarez
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2012
  • 卷号:6
  • 页码:501-521
  • DOI:10.1214/12-EJS683
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In some applications with astronomical and survival data, doubly truncated data are sometimes encountered. In this work we introduce kernel-type density estimation for a random variable which is sampled under random double truncation. Two different estimators are considered. As usual, the estimators are defined as a convolution between a kernel function and an estimator of the cumulative distribution function, which may be the NPMLE [2] or a semiparametric estimator [9]. Asymptotic properties of the introduced estimators are explored. Their finite sample behaviour is investigated through simulations. Real data illustration is included.
  • 关键词:Biased sampling;double truncation;semipara metric estimator;smoothing methods.
国家哲学社会科学文献中心版权所有