首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:On the empirical estimation of integral probability metrics
  • 本地全文:下载
  • 作者:Bharath K. Sriperumbudur ; Kenji Fukumizu ; Arthur Gretton
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2012
  • 卷号:6
  • 页码:1550-1599
  • DOI:10.1214/12-EJS722
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Given two probability measures, $\mathbb{P}$ and $\mathbb{Q}$ defined on a measurable space, $S$, the integral probability metric (IPM) is defined as $$\gamma_{\EuScript{F}}(\mathbb{P},\mathbb{Q})=\sup\left\{\left\vert \int_{S}f\,d\mathbb{P}-\int_{S}f\,d\mathbb{Q}\right\vert\,:\,f\in\EuScript{F}\right\},$$ where $\EuScript{F}$ is a class of real-valued bounded measurable functions on $S$. By appropriately choosing $\EuScript{F}$, various popular distances between $\mathbb{P}$ and $\mathbb{Q}$, including the Kantorovich metric, Fortet-Mourier metric, dual-bounded Lipschitz distance (also called the Dudley metric), total variation distance, and kernel distance, can be obtained.
国家哲学社会科学文献中心版权所有