首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Classification and estimation in the Stochastic Blockmodel based on the empirical degrees
  • 本地全文:下载
  • 作者:Antoine Channarond ; Jean-Jacques Daudin ; Stéphane Robin
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2012
  • 卷号:6
  • 页码:2574-2601
  • DOI:10.1214/12-EJS753
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The Stochastic Blockmodel [16] is a mixture model for heterogeneous network data. Unlike the usual statistical framework, new nodes give additional information about the previous ones in this model. Thereby the distribution of the degrees concentrates in points conditionally on the node class. We show under a mild assumption that classification, estimation and model selection can actually be achieved with no more than the empirical degree data. We provide an algorithm able to process very large networks and consistent estimators based on it. In particular, we prove a bound of the probability of misclassification of at least one node, including when the number of classes grows.
  • 关键词:Stochastic Blockmodel;unsupervised classifica tion;clustering;estimation;model selection.
国家哲学社会科学文献中心版权所有