首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:Blockwise SVD with error in the operator and application to blind deconvolution
  • 本地全文:下载
  • 作者:S. Delattre ; M. Hoffmann ; D. Picard
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2012
  • 卷号:6
  • 页码:2274-2308
  • DOI:10.1214/12-EJS745
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider linear inverse problems in a nonparametric statistical framework. Both the signal and the operator are unknown and subject to error measurements. We establish minimax rates of convergence under squared error loss when the operator admits a blockwise singular value decomposition (blockwise SVD) and the smoothness of the signal is measured in a Sobolev sense. We construct a nonlinear procedure adapting simultaneously to the unknown smoothness of both the signal and the operator and achieving the optimal rate of convergence to within logarithmic terms. When the noise level in the operator is dominant, by taking full advantage of the blockwise SVD property, we demonstrate that the block SVD procedure outperforms classical methods based on Galerkin projection [14] or nonlinear wavelet thresholding [18]. We subsequently apply our abstract framework to the specific case of blind deconvolution on the torus and on the sphere.
国家哲学社会科学文献中心版权所有