首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:The graphical lasso: New insights and alternatives
  • 本地全文:下载
  • 作者:Rahul Mazumder ; Trevor Hastie
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2012
  • 卷号:6
  • 页码:2125-2149
  • DOI:10.1214/12-EJS740
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The graphical lasso [5] is an algorithm for learning the structure in an undirected Gaussian graphical model, using $\ell_{1}$ regularization to control the number of zeros in the precision matrix $\boldsymbol{\Theta}=\boldsymbol{\Sigma}^{-1}$ [2, 11]. The R package GLASSO [5] is popular, fast, and allows one to efficiently build a path of models for different values of the tuning parameter. Convergence of GLASSO can be tricky; the converged precision matrix might not be the inverse of the estimated covariance, and occasionally it fails to converge with warm starts. In this paper we explain this behavior, and propose new algorithms that appear to outperform GLASSO.
国家哲学社会科学文献中心版权所有