首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:The lasso problem and uniqueness
  • 本地全文:下载
  • 作者:Ryan J. Tibshirani
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2013
  • 卷号:7
  • 页码:1456-1490
  • DOI:10.1214/13-EJS815
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The lasso is a popular tool for sparse linear regression, especially for problems in which the number of variables $p$ exceeds the number of observations $n$. But when $p>n$, the lasso criterion is not strictly convex, and hence it may not have a unique minimizer. An important question is: when is the lasso solution well-defined (unique)? We review results from the literature, which show that if the predictor variables are drawn from a continuous probability distribution, then there is a unique lasso solution with probability one, regardless of the sizes of $n$ and $p$. We also show that this result extends easily to $\ell_{1 penalized minimization problems over a wide range of loss functions.
  • 关键词:Lasso;high-dimensional;uniqueness;LARS.
国家哲学社会科学文献中心版权所有