首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Significance testing in quantile regression
  • 本地全文:下载
  • 作者:Stanislav Volgushev ; Melanie Birke ; Holger Dette
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2013
  • 卷号:7
  • 页码:105-145
  • DOI:10.1214/12-EJS765
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider the problem of testing significance of predictors in multivariate nonparametric quantile regression. A stochastic process is proposed, which is based on a comparison of the responses with a nonparametric quantile regression estimate under the null hypothesis. It is demonstrated that under the null hypothesis this process converges weakly to a centered Gaussian process and the asymptotic properties of the test under fixed and local alternatives are also discussed. In particular we show, that - in contrast to the nonparametric approach based on estimation of $L^{2}$-distances - the new test is able to detect local alternatives which converge to the null hypothesis with any rate $a_{n}\to 0$ such that $a_{n}\sqrt{n}\to\infty$ (here $n$ denotes the sample size). We also present a small simulation study illustrating the finite sample properties of a bootstrap version of the corresponding Kolmogorov-Smirnov test.
国家哲学社会科学文献中心版权所有