首页    期刊浏览 2025年06月23日 星期一
登录注册

文章基本信息

  • 标题:Optimal model selection in heteroscedastic regression using piecewise polynomial functions
  • 本地全文:下载
  • 作者:Adrien Saumard
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2013
  • 卷号:7
  • 页码:1184-1223
  • DOI:10.1214/13-EJS803
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider the estimation of a regression function with random design and heteroscedastic noise in a nonparametric setting. More precisely, we address the problem of characterizing the optimal penalty when the regression function is estimated by using a penalized least-squares model selection method. In this context, we show the existence of a minimal penalty, defined to be the maximum level of penalization under which the model selection procedure totally misbehaves. The optimal penalty is shown to be twice the minimal one and to satisfy a non-asymptotic pathwise oracle inequality with leading constant almost one. Finally, the ideal penalty being unknown in general, we propose a hold-out penalization procedure and show that the latter is asymptotically optimal.
国家哲学社会科学文献中心版权所有