首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Inverse statistical learning
  • 本地全文:下载
  • 作者:Sébastien Loustau
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2013
  • 卷号:7
  • 页码:2065-2097
  • DOI:10.1214/13-EJS838
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Let $(X,Y)\in\mathcal{X}\times\mathcal{Y}$ be a random couple with unknown distribution $P$. Let $\mathcal{G}$ be a class of measurable functions and $\ell$ a loss function. The problem of statistical learning deals with the estimation of the Bayes: \[g^{*}=\arg\min_{g\in\mathcal{G}}\mathbb{E}_{P}\ell(g,(X,Y)).\] In this paper, we study this problem when we deal with a contaminated sample $(Z_{1},Y_{1}),\dots,(Z_{n},Y_{n})$ of i.i.d. indirect observations. Each input $Z_{i}$, $i=1,\dots,n$ is distributed from a density $Af$, where $A$ is a known compact linear operator and $f$ is the density of the direct input $X$.
国家哲学社会科学文献中心版权所有