摘要:In the present paper we consider the problem of estimating a periodic $(r+1)$-dimensional function $f$ based on observations from its noisy convolution. We construct a wavelet estimator of $f$, derive minimax lower bounds for the $L^{2}$-risk when $f$ belongs to a Besov ball of mixed smoothness and demonstrate that the wavelet estimator is adaptive and asymptotically near-optimal within a logarithmic factor, in a wide range of Besov balls. We prove in particular that choosing this type of mixed smoothness leads to rates of convergence which are free of the “curse of dimensionality” and, hence, are higher than usual convergence rates when $r$ is large.